sexta-feira, dezembro 24, 2010
Canhoneio
Canhoneio
– Tem a finalidade de comunicar o interior do poço com aformação produtora.
– Utiliza-se cargas explosivas.
– A explosão gera jatos de alta energia que
– atravessam o revestimento, o cimento e penetram até cerca deum metro na formação, criando os canais de fluxo entre aformação e o poço.
– As cargas moldadas são descidas dentro de canhões, que sãocilindros de aço com furos nos quais se alojam as cargas.
– Posiciona-se o canhão em frente ao intervalo desejado, e um mecanismo de disparo é ativado da superfície.
– Pode-se descer os canhões dentro do revestimento, através de cabo, enroscados na própria coluna ou a cabo por dentro da coluna de produção.
Canhoneio
– Os canhões convencionais e os TCP têm diâmetro maior doque os que são descidos através da coluna de produção, e por isso, permitem o uso de cargas maiores, com maior poder de penetração.
– Parâmetros relacionados com a geometria do canhoneio que têm influência no IP:
l Densidade dos jatos (perfurações por unidade de comprimento).
l Penetração dos jatos.
l Defasagem entre os jatos (0°, 90°, 120° e 180°).
l Folga entre o canhão e o revestimento.
l Diâmetro do orifício perfurado.
Fonte: Curso Téc. em Petróleo e Gás - CTEAD
Rochas geradoras
O elemento mais importante e fundamental para a ocorrência de petróleo em quantidades significativas em uma bacia sedimentar, em algum tempo geológico passado ou presente, é a existência de grandes volumes de matéria orgânica de qualidade adequada acumulada quando da deposição de certas rochas sedimentares que são denominadas de geradoras. São estas rochas que, submetidas a adequadas temperaturas e pressões, geraram o petróleo em subsuperfície. Se este elemento faltar em uma bacia, a Natureza não terá meios de substituí-la, ao contrário dos outros cinco elementos constituintes do sistema petrolífero, que mesmo estando ausentes, podem ser de alguma forma compensados por condições de exceções geológicas ou por algumas coincidências adequadas.
Rochas geradoras são normalmente constituídas de material detrítico de granulometria muito fina(fração argila), tais como folhelhos ou calcilutitos, representantes de antigos ambientes sedimentares de baixa energia e que experimentaram, por motivos diversos, explosões de vida microscópica. Os remanescentes orgânicos autóctones (material planctônico) ou alóctones (material vegetal terrestre carreado para dentro do ambiente) são incorporados às lamas sob a forma de matéria orgânica diluída. A princípio, quanto maior a quantidade de matéria orgânica, mais capacidade terá a rocha para gerar grandes quantidades de petróleo. Entretanto, a incorporação desta matéria orgânica na rocha deve vir acompanhada da preservação de seu conteúdo original, rico em compostos de C e H. Para isto, o ambiente deve estar livre de oxigênio, elemento altamente oxidante e destruidor da riqueza em C e H das partículas orgânicas originais. Em suma, ambientes anóxicos favorecem a preservação da matéria orgânica e, conseqüentemente, a manutenção da riqueza original de rochas geradoras.
De uma maneira geral, rochas sedimentares comuns apresentam teores de Carbono Orgânico Total (COT, teor em peso) inferior a 1%. Para uma rocha ser considerada como geradora seus teores devem ser superiores a este limite de 1% e, muito comumente, situados na faixa de 2% - 8%, não sendo incomuns valores de até 14%; mais raramente, até 24%. O tipo de petróleo gerado depende fundamentalmente do tipo de matéria orgânica preservada na rocha geradora. Matérias orgânicas derivadas de vegetais superiores tendem a gerar gás, enquanto o material derivado de zooplancton e fitoplancton, marinho ou lacustre tende a gerar óleo. O estágio de maturação térmica de uma rocha geradora, ou seja, a temperatura na qual ela está gerando petróleo, também influenciará no tipo de petróleo gerado. Em condições normais, uma rocha geradora começa a transformar seu querogênio em petróleo em torno de 600oC. No início, forma-se um óleo de baixa maturidade, viscoso. À medida que a temperatura aumenta, o óleo gerado vai ficando mais fluido e quantidade de gás vai aumentando. Por volta de 900oC, as rochas geradoras atingem seu pico de geração, expelindo grandes quantidades de óleo e gás. Com o aumento da temperatura até os 1200oC, o óleo fica cada vez mais fluido e mais rico em gás dissolvido. Por volta desta temperatura, a quantidade de gás é predominante e o óleo gerado já pode ser considerado um condensado. Entre 1200 - 1500oC, apenas gás é gerado pelas rochas-fonte.
Fonte: http://www.scielo.br
PREPARANDO A PERFURAÇÃO
Logo que o local é selecionado, precisa ser pesquisado para se determinar seus limites e estudar o impacto ambiental. Acordos de arrendamento, títulos e direito a vias de acesso para a terra precisam ser obtidos e avaliados quanto aos aspectos legais. Para locais em alto-mar, é necessário determinar a jurisdição legal.
Assim que os assuntos legais são resolvidos, a equipe trata de preparar o terreno:
1. o terreno é limpo e nivelado e estradas de acesso são construídas, se necessário;
2. como a perfuração utiliza água, é necessário que haja uma fonte nas proximidades. Caso não exista nenhuma fonte natural, um poço de água é cavado;
3. a equipe cava um fosso de reserva, que é usado para o descarte dos cortes de rocha e lama da perfuração durante o processo e o forra com plástico para proteger o meio ambiente. Se o local for uma área sensível em termos ecológicos, como um pântano ou região selvagem, os cortes e a lama deverão ser descartados em outros locais com ajuda de caminhões.
Logo que o terreno estiver preparado, diversos poços secundários precisarão ser escavados para a torre e o poço principal. Um fosso retangular, chamado de escavação, é feito ao redor do local do poço real da perfuração. A escavação proporciona um espaço de trabalho ao redor do poço para os trabalhadores e acessórios de perfuração. A equipe então começa a perfurar o poço principal, freqüentemente com um pequeno caminhão-sonda ao invés de uma torre principal. A primeira parte do poço é maior e mais rasa do que a porção principal e é revestida com uma tubulação de esteio de grande diâmetro. Poços adicionais são escavados na lateral para armazenar temporariamente o equipamento. Quando esses poços são finalizados, o equipamento da torre pode ser trazido e erigido.
Dependendo de quão remoto é o local da perfuração e seu acesso, o equipamento pode ser transportado até o local por caminhão, helicóptero ou barcaça. Algumas torres são construídas sobre barcos ou barcaças para trabalhar sobre águas interiores onde não há fundações para suportar uma torre (como em pântanos ou lagos). Assim que o equipamento chega ao local, a torre é erigida.
Fonte: http://ciencia.hsw.uol.com.br/
Logo que o terreno estiver preparado, diversos poços secundários precisarão ser escavados para a torre e o poço principal. Um fosso retangular, chamado de escavação, é feito ao redor do local do poço real da perfuração. A escavação proporciona um espaço de trabalho ao redor do poço para os trabalhadores e acessórios de perfuração. A equipe então começa a perfurar o poço principal, freqüentemente com um pequeno caminhão-sonda ao invés de uma torre principal. A primeira parte do poço é maior e mais rasa do que a porção principal e é revestida com uma tubulação de esteio de grande diâmetro. Poços adicionais são escavados na lateral para armazenar temporariamente o equipamento. Quando esses poços são finalizados, o equipamento da torre pode ser trazido e erigido.
Dependendo de quão remoto é o local da perfuração e seu acesso, o equipamento pode ser transportado até o local por caminhão, helicóptero ou barcaça. Algumas torres são construídas sobre barcos ou barcaças para trabalhar sobre águas interiores onde não há fundações para suportar uma torre (como em pântanos ou lagos). Assim que o equipamento chega ao local, a torre é erigida.
Fonte: http://ciencia.hsw.uol.com.br/
Assinar:
Postagens (Atom)